Партнеры
Очумелые ручки. Техническое обслуживание и ремонт систем ОПС Сайт по ремонту радиоэлектронной аппаратуры.Схемы,статьи,форум.

Разбираемся с причинами искажения видеоизображения в системах видеонаблюдения

[Всего голосов: 0    Средний: 0/5]

В статье рассматриваются характерные причины возникновения помех и искажений видеоизображения в системах охранного телевидения. Как правило, искажения видеоизображения связаны с местом установки видеооборудования и возникают уже на первом этапе пуско-наладочных работ. Так, на крупных промышленных объектах с протяженными линиями связи избежать искажений изображения, без применения специальных мер, обычно сразу не удается. Искажения и помехи возникнут, если при проектировании системы не было уделено должного внимания вопросам электропитания, заземления и экранирования. Существуют некоторые другие причины и условия, при которых искажения возникают с высокой степенью вероятности.

На наш взгляд, самой распространенной причиной помех в системах видеонаблюдения являются «блуждающие» токи заземления. Физический принцип образования помехи крайне прост. Рассмотрим механизм образования помехи на системе наблюдения, состоящей из видеокамеры, линии связи на базе коаксиального кабеля и монитора. В данной системе реализуется несимметричная схема передачи видеосигнала, при которой оплетка кабеля выполняет функции второго проводника для передачи видеосигнала и высокочастотного экрана. Между тем в реальной системе видеонаблюдения, даже в простейшей, по оплетке кабеля будут протекать еще и «блуждающие» токи промышленной частоты. Причина появления «блуждающих» токов в наличии потенциалов между разнесенными приборами системы видеонаблюдения. В нашем случае, эта разница потенциалов между удаленной видеокамерой и монитором, образованная за счет протекания между их точками заземления токов различного мощного промышленного оборудования, транспорта и т.д. Причем, видеокамера и монитор могут не иметь прямого электрического контакта с землей, а соединяться с ней через емкости своих блоков питания. Таким образом, практически в любой видеосистеме образуется как минимум один «паразитный» контур заземления, при котором в цепи видеосигнала начинают протекать токи от различного промышленного оборудования, расположенного на объекте и прилегающей к нему территории. Подобные контуры заземления образуются как между удаленной камерой и приемным оборудованием, так и между несколькими удаленными камерами (рис.1). В результате сложения промышленных токов с видеосигналом на изображении возникают темные движущиеся тени, искажения, нарушается синхронизация, изменяются геометрические размеры объектов наблюдения. Разница потенциалов между точками заземления видеокамеры и приемного оборудования на объекте может достигать десятков и сотен вольт уже при дистанции между ними в 300-500 м. Реальный результат воздействия помехи от «блуждающих» токов заземления на объекте показан в кадре 1. Влияние контуров заземления становится еще заметнее с увеличением дистанции передачи изображения и уменьшением уровня видеосигнала. При особенно неудачном заземлении видеооборудования велика вероятность получения электрического удара током при подсоединении или отсоединении разъемов линий связи.

Похожие статьи  Инновации в защите периметра, пулерассеивающие, комбинированные и радиопрозрачные ограждения

Рис. 1.

Очевидно, что для устранения искажений необходимо разорвать все «паразитные» контуры заземления. Существует несколько способов устранения «блуждающих» токов по цепям заземления видеооборудования. Во-первых, применяются видеокамеры с изоляцией корпуса и разъемов от заземленного кожуха и кронштейна. Оплетка кабеля и разъем подключения к видеокамере должны быть тоже изолированы от земли. Но при питании камеры в удаленной точке от электросети 220 В/50 Гц все равно образуется «паразитный» контур через емкости блока питания камеры и нулевого провода электросети. Поэтому более правильно передавать видеосигнал от камеры через гальваническую развязку. Наиболее распространены изолирующие видеотрансформаторы и оптоэлектронные развязки. Схема включения изолирующего видеотрансформатора в состав системы видеонаблюдения приведена на рис.2. Видеотрансформатор может устанавливаться как на передающей, так и на приемной стороне линии связи. При таком включении видеооборудования протекание «блуждающих» токов промышленной частоты по оплетке кабеля исключается. Оптоэлектронная развязка действует аналогично, но требует источника электропитания. Результат устранения «блуждающих» токов заземления в системе наблюдения на объекте при помощи видеотрансформатора представлен в кадре 2.

Рис. 2

Теперь несколько слов о помехах, возникающих при отсутствии контуров заземления, но с механизмом формирования, практически, идентичным рассмотренному выше. Речь пойдет о периодической импульсной помехе, распространяющейся по нулевому проводу электросети. Как правило, помеха возникает от импульсных источников питания промышленного оборудования. Тактовая частота источников — несколько десятков килогерц. Пути распространения импульсной помехи: емкости между обмотками трансформаторов блоков питания видеооборудования и цепи, связанные с нулевым проводом электросети. Внешнее проявление импульсной помехи показано в кадре 3, а результат устранения ее с помощью видеотрансформатора приведен в кадре 4. За последние годы широкое распространение получили цифровые системы обработки и регистрации видеосигнала на базе бытовых персональных компьютеров. Однако следует отметить, что на объектах в многоканальных системах на базе бытовых РС при длине линий связи уже в несколько десятков метров на изображении образуются помехи с широким спектром, источником которых являются конструкция и характеристики импульсного блока питания компьютера. Попутно следует отметить, что при замене цифрового регистратора на базе РС на аналогичный автономный «none РC», искажения существенно снижаются или устраняются полностью. Разница в конструкции и схемотехнике бытового компьютера и специализированного автономного регистратора дает о себе знать. В любом случае искажения изображения устраняются путем подключения всех видеокамер к компьютеру через гальванические развязки. Не менее распространенной причиной искажений изображения являются электромагнитные помехи и наводки на линии связи.

Похожие статьи  Сделай свой дом безопасным

Электрические провода линий связи (коаксиальный кабель или витая пара) характеризуются погонным сопротивлением и емкостью, ограничивающими максимальную дистанцию передачи видеосигнала. При выборе кабельной продукции следует отдавать предпочтение качественным отечественным изделиям. На промышленных объектах километры кабельных линий связи превращаются в гигантскую широкополосную антенну, принимающую электромагнитные помехи от различных источников, в том числе наводки от соседних кабелей и радиоизлучения. Так же следует учитывать то, что медная или алюминиевая оплетка коаксиального кабеля абсолютно не защищает широкополосный видеосигнал от низкочастотных промышленных наводок и помех. Механизм образования синфазных, относительно земли, помех показан на рис. 3. Синфазные помехи также отрицательно воздействуют на цепи питания видеооборудования. Поэтому на промышленных объектах длинные цепи питания постоянным током рекомендуется прокладывать в экране. Воздействие наведенных напряжений Е1 и Е2 на центральную жилу и оплетку кабеля, приводит к возникновению напряжения помехи Е3, суммирующуюся с полезным видеосигналом. Значение Е3 зависит от величины наведенных помех Е1 и Е2, параметров линии связи и множества других факторов. Синфазные помехи присутствуют в любой системе видеонаблюдения, как правило не вызывая существенных искажений изображения. Другое дело, когда результат их воздействия становится неприемлемым с точки зрения качества результирующего видеоизображения, и необходимо принимать меры, исключающие негативные явления.

Рис. 3.

Можно выделить следующие категории источников помех:

промышленные установки и кабели питания;
трансформаторные подстанции и высоковольтные линии;
преобразователи и источники бесперебойного питания;
электросварка;
электротранспорт;
передающие антенны и многие другие потребители электроэнергии.

Проявление синфазных помех на экране монитора зависит от мощности и частотного диапазона источников помех. В кадре 5 хорошо видны искажения изображения, вызванные прокладкой видеокабелей в непосредственной близости от силовых цепей на объекте. Характер искажений свидетельствует о наличии промышленного оборудования со случайным импульсным потреблением электроэнергии. Часто на объектах имеется множество источников помех, и проложить линии передачи видеосигнала без синфазных помех на изображении оказывается невозможным. Радиочастотные наводки от близкорасположенных передающих антенн приводят к искажениям изображения и мерцанию картинки на экране монитора подобным в кадре 7. Следует отметить, что значительно менее подвержены синфазным помехам симметричные линии передачи видеоизображения на основе экранированной витой пары и специальных приемников и передатчиков видеосигнала. Применение экранированной витой пары позволяет на промышленном объекте получить максимальную дистанцию передачи изображения гораздо больше по сравнению с линией связи на основе коаксиального кабеля. Следует отметить, что максимальная дистанция передачи видеосигнала по коаксиальному кабелю ограничивается внешними помехами и наводками, а по витой паре — частотными потерями видеосигнала в линии связи. Но универсальным средством, работающим как на симметричных, так и на несимметричных линиях и устраняющим «мусор» от воздействия синфазных помех служат специализированные широкополосные фильтры. Фильтр включается в разрыв любой двухпроводной линии связи и уменьшает искажения изображения до приемлемой величины, не внося при этом потери в видеосигнал. В кадрах 6 и 8 отображены результаты включения фильтра в линию связи при рассмотренных выше воздействиях синфазных помех.


Из рассмотренного можно сделать следующие выводы:

Похожие статьи  LAZSO - Как выбрать разъём BNC?

в условиях промышленных объектов существуют разнообразные причины возникновения помех и искажений изображения;
вероятность искажений повышается с увеличением протяженности и количеством линий передач видеосигналов;
наиболее типичными причинами образования помех являются «блуждающие» токи заземления и синфазные наводки.

Основными доступными методами борьбы с помехами изображения являются:

экранирование и заземление;
гальваническая развязка;
фильтрация синфазных наводок по линиям передачи видеосигнала;
фильтрация помех по цепям электропитания видеооборудования;
разнесение и ориентация линий связи относительно силовых цепей и источников помех;
выбор качественной кабельной продукции;
использование симметричных проводных линий связи на основе витой пары;
использование волоконно-оптических линий связи.

В заключение

При проектировании системы видеонаблюдения и выборе ее составных частей рекомендуется чаще обращаться за технической помощью к производителям видеооборудования. Специалисты помогут Вам выбрать из всего многообразия приборы оптимальные для Вашей конкретной задачи. Не забывайте, что качество системы закладывается именно на этапе ее проектирования. В техническом проекте системы видеонаблюдения должно быть предусмотрено дополнительное оборудование, обеспечивающее качество передачи изображения. В противном случае ошибки Вам гарантированы. Даже самую технически совершенную систему можно превратить в «груду неработающего железа» если не будут учтены реальные условия эксплуатации. При выборе оборудования кроме качества изображения необходимо рассмотреть и надежность — т.е. обеспечить «живучесть» системы. К сожалению, в обычной практике выбор в пользу того или другого оборудования основывается часто не на технических характеристиках, а только на цене. При выборе оборудования помните: «Скупой платит дважды».

 

А. Кисельков, Е. Кочетков, НПО » Защита информации »
«Алгоритм Безопасности» № 4, 2005 год.

(Visited 79 times, 1 visits today)
carcam.ru